If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+40x-300=300
We move all terms to the left:
0.5x^2+40x-300-(300)=0
We add all the numbers together, and all the variables
0.5x^2+40x-600=0
a = 0.5; b = 40; c = -600;
Δ = b2-4ac
Δ = 402-4·0.5·(-600)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{7}}{2*0.5}=\frac{-40-20\sqrt{7}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{7}}{2*0.5}=\frac{-40+20\sqrt{7}}{1} $
| -3(t+2)=18 | | (x-3)²=2 | | 0.50x+0.45(50)=4.25 | | P(x)=0.5x^2+40x-300 | | 2(x-8)=50 | | (x-5)(2x+3)=7 | | 4X7-6X=5-4x=4 | | 64x4^3=16 | | 2x+5x-9=3x+12 | | 5x-(4x+8)=+8 | | 11.26=1.72w+1.80 | | 2.5(2s+4)=4.8 | | (2x-15+x)(2x-15+x)=180 | | 135+x=x+54 | | 14x-13=0 | | 3x(x-2)=-7x+1 | | H1+h1=55 | | 5x/3+4=-1/3=x | | 5x+85+3x-30=180 | | 3-(2x+5)=-8 | | 11s+s+s-12s=9 | | 2x+18+6x−8=1.80 | | 2x+18+6x−8=080 | | 7x=19+1/2 | | 2x+18+6x−8=90 | | 15x+22=7x+65 | | 2y=2-6 | | 4•n=6+n | | 3(x-8)-9=-33 | | 3x-10+4x-12=27 | | 6x-27=90 | | 5(2+4)=-2(3x-1)-4 |